boston.co.kr [미적분] calculus(미적분) differential calculus(미분) > boston6 | boston.co.kr report

[미적분] calculus(미적분) differential calculus(미분) > boston6

본문 바로가기

뒤로가기 boston6

[미적분] calculus(미적분) differential calculus(미분)

페이지 정보

작성일 20-09-08 03:02

본문




Download : 4_Differential_Calculus.hwp







설명
미적분,미분,적분,calculus,시험자료,전문자료

시험대비 theorem(요약)과 definition(定義(정의))를 보기 좋음.


순서
4. Differential Calculus

Definition of Derivative

Example 7. Continuity of functions having derivatives.

Theorem 4.1.

Theorem 5.2. Chain Rule.


4. Differential Calculus

Definition of Derivative. The derivative f`(x) is defined by the equation
f`(x) = , provided the limit exists. The number f`(x) is also called the rate of change of f at x.

Hint. an - bn = (a-b)
Hint. sin x - sin y = 2 sin cos
Hint. = 1
Hint. cos x - cos y = -2 sin sin
Example 7. Continuity of functions having derivatives. If a function f has a derivative at a point x, then it is also continuous at x (반대는 성립 X일수도)
- f(x+h) = f(x) + h()
- Continuity : (a) f is defined at p
(b)

Theorem 4.1. Let f and g be two functions defined on a common interval. At each point where f and g have a derivative, the same is true of the sum f+g, the difference f-g, the product f ? g, and the quotient f/g. (For f/g we need the extra proviso that g is not zero at the point in question.) The derivatives of these functions are given by the following formulas :
(i) (f + g)` = f` + g`
(ii) (f - g)` = f` - g`
(iii) (f ? g…(drop)
전문자료/시험자료


미적분의 미분에 대해 영어 자료 정리시험대비 theorem(정리)과 definition(정의)를 보기 좋음. , [미적분] calculus(미적분) differential calculus(미분)시험자료전문자료 , 미적분 미분 적분 calculus


4_Differential_Calculus_hwp_01.gif 4_Differential_Calculus_hwp_02.gif 4_Differential_Calculus_hwp_03.gif




Download : 4_Differential_Calculus.hwp( 96 )



미적분의 미분에 대해 영어 자료 요약


[미적분] calculus(미적분) differential calculus(미분)


다.
전체 18,203건 1 페이지
해당자료의 저작권은 각 업로더에게 있습니다.

evga.co.kr 은 통신판매중개자이며 통신판매의 당사자가 아닙니다.
따라서 상품·거래정보 및 거래에 대하여 책임을 지지 않습니다.
Copyright © boston.co.kr. All rights reserved.
PC 버전으로 보기